1. Multiple Choice A One correct answer each.
(a) State the order and the linearity or type of nonlinearity for the following PDE: $\left(u+u_{x x}+u_{y y}\right)^{19}=u_{y}+2022 u$.
$\bigcirc$ First order, linear.
$\bigcirc$ First order, nonlinear. It is not quasilinear.
X Second order, nonlinear. It is quasilinear.Second order, nonlinear. It is not quasilinear.
SOL: Take $(\cdot)^{1 / 19}$ on both sides.
(b) State the order and the linearity or type of nonlinearity for the following PDE: $\left(x^{2}+1\right)\left(u_{x x x}+\sinh (3 y) u_{x}\right)=\ln \left(x^{2}+1\right) u$.Second order, nonlinear. It is quasilinear.Third order, nonlinear. It is quasilinear.
X Third order, linear.Second order, linear.
SOL: To see this, distribute $\left(x^{2}+1\right)$ inside the parenthesis.
(c) The PDE $e^{x+y} u_{x x}+2 e^{x} u_{x y}-\left(e^{y-x}-2\right) u_{y y}+7 u=\cos \left(x^{2}\right)$, isnowhere hyperbolic.parabolic when $x \neq y$.
X parabolic when $x=y$.everywhere elliptic.
SOL: We compute $\delta=b^{2}-a c=e^{2 x}+e^{x+y}\left(e^{y-x}-2\right)=e^{2 x}+e^{2 y}-2 e^{x+y}=\left(e^{x}-e^{y}\right)^{2}$.
(d) For which function $f: \mathbb{R} \rightarrow \mathbb{R}$ is the following second order linear PDE

$$
\frac{1}{4} f(x) u_{x x}+u_{x y}+f(x) u_{y y}-f^{2}(x) y u_{y}=u
$$

everywhere elliptic?

$$
\begin{aligned}
& f(x)=\sin (x) \\
& \mathrm{X} f(x)=\sin (x)+3
\end{aligned}
$$$f(x)=\frac{1}{2} \sin (x)$.$f(x)=1$.

SOL: $\delta=b^{2}-a c=\frac{1}{4}-\frac{1}{4} f(x)^{2}$. The PDE is elliptic if $\delta<0$, that is $f(x)^{2}-1>0$. This is the case if $f(x)=\sin (x)+3$.
2. Multiple Choice B One correct answer each.
(a) By the transversality condition, the PDE

$$
\begin{cases}(u-y) u_{x}+(x-y) u_{y}=\ln \left(u^{2}+1\right), & (x, y) \in \mathbb{R}^{2} \\ u(0, y)=y^{2}, & y \in \mathbb{R}\end{cases}
$$

admitsa global solution.
$\bigcirc$ a local solution for $(x, y) \neq(0,-1)$.
X a local solution for $(x, y) \notin\{(0,0),(0,1)\}$.no solutions at all.
SOL: Here, $a(x, y, u)=u-y$ and $b(x, y, u)=x-y$. The initial curve is parametrized by $\Gamma(s)=\left(0, s, s^{2}\right)$. We can check the transversality condition

$$
\operatorname{det}\left[\begin{array}{ll}
\frac{d x}{d t} & \frac{d y}{d t} \\
\frac{d x}{d s} & \frac{d y}{d s}
\end{array}\right]=\left[\begin{array}{cc}
s^{2}-s & -s \\
0 & 1
\end{array}\right]=s(s-1)
$$

which is not zero if $s=y \notin\{0,1\}$.
(b) Let $u$ be the weak solution of

$$
\begin{cases}u_{y}+\left(\alpha u-u^{2}\right) u_{x}=0, & \text { in }(x, y) \in \mathbb{R} \times(0,+\infty), \\ u(x, 0)=1, & \text { if } x<0, \\ u(x, 0)=0, & \text { if } x \geq 0,\end{cases}
$$

obtained by imposing the Rankine-Hugoniot condition, where $\alpha \in \mathbb{R}$ is some given constant. Then, $u$ satisfies the entropy condition if

X $\alpha>\frac{4}{3}$.
$\bigcirc \alpha<\frac{4}{3}$.
$\alpha>-\frac{2}{3}$.
$\bigcirc \alpha<\frac{2}{3}$.
SOL: Here $c(u)=\alpha u-u^{2}$ and $f(u)=\frac{\alpha}{2} u^{2}-\frac{u^{3}}{3}$. We compute $\gamma^{\prime}=f(1)=\frac{\alpha}{2}-\frac{1}{3}$. The entropy condition is satisfied if

$$
0=c(0)=c\left(u_{+}\right)<\gamma^{\prime}=\frac{\alpha}{2}-\frac{1}{3}<c\left(u_{-}\right)=c(1)=\alpha-1 .
$$

This is the case if $\alpha>\max \left\{\frac{2}{3}, \frac{4}{3}\right\}=\frac{4}{3}$.
(c) Denote with $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$ the (open) unit disk. For which value of $c$ is the PDE

$$
\begin{cases}\Delta u=y^{2}+c, & \text { in } D \\ \partial_{\nu} u=x, & \text { on } \partial D\end{cases}
$$

solvable?

$$
\begin{aligned}
\bigcirc c & =\frac{1}{2} \\
c & =0 \\
\mathrm{X} c & =-\frac{1}{4} \\
c & =-\frac{\pi}{8}
\end{aligned}
$$

SOL: We have to check the compatibility condition $\int_{D} \Delta u d A=\int_{\partial D} \partial_{\nu} u d l$. Here,

$$
\int_{D}\left(y^{2}+c\right) d A=\int_{\partial D} x d l=0
$$

and therefore, we can compute in polar coordinates

$$
\begin{aligned}
\pi c & =-\int_{D} y^{2} d A=-\int_{0}^{1} r \int_{0}^{2 \pi}(r \sin (\theta))^{2} d \theta d r=-\int_{0}^{1} r^{3} \int_{0}^{2 \pi} \sin (\theta)^{2} d \theta d r \\
& =-\frac{1}{4} \int_{0}^{2 \pi} \sin ^{2}(\theta) d \theta=-\frac{\pi}{4} .
\end{aligned}
$$

3. Boxes Fill the white boxes with the final answer. Do not include your computations.
(a) Let $\alpha \in \mathbb{R}$ be a constant. Then, the function

$$
u(x, y)= \begin{cases}1, & \text { if } x \geq \alpha y \\ 0, & \text { if } x<\alpha y\end{cases}
$$

is a weak solution of the conservation law

$$
\begin{cases}u_{y}+\left(2 u+u^{3}\right) u_{x}=0, & (x, y) \in \mathbb{R} \times(0,+\infty) \\ u(x, 0)=1, & x \geq 0 \\ u(x, 0)=0, & x<0\end{cases}
$$

if $\alpha$ is equal to

$$
\alpha=\frac{5}{4}
$$

SOL: We have to check the Rankine-Hugoniot condition for the flux $f(u)=u^{2}+\frac{u^{4}}{4}$ : $\alpha=\frac{f\left(u^{+}\right)-f\left(u^{-}\right)}{u^{+}-u^{-}}=f(1)=1+\frac{1}{4}=\frac{5}{4}$.
(b) Consider the Dirichlet problem

$$
\begin{cases}\Delta u=0, & \text { in } D \\ u=\frac{2 x+1}{x^{2}+y^{2}+1} & \text { on } \partial D\end{cases}
$$

where the domain $D$ is the anulus defined by $D:=\left\{(x, y) \in \mathbb{R}^{2}: 1<\sqrt{x^{2}+y^{2}}<2\right\}$. The maximum of $u$ in $D$ is equal to
$\square$

SOL: We apply the maximum principle: $\max _{\bar{D}} u=\max _{\partial D} u=\max _{\partial D} \frac{2 x+1}{x^{2}+y^{2}+1}$. Now, $\partial D=C_{1} \cup C_{2}$ where $C_{1}$ is a circle of radius 1 , and $C_{2}$ is a circle of radius 2. Hence, in polar coordinates

$$
\max _{C_{1}} u=\max _{\theta \in[0,2 \pi]} \frac{2 \cos (\theta)+1}{\sin (\theta)^{2}+\cos (\theta)^{2}+1}=\max _{\theta \in[0,2 \pi]} \frac{2 \cos (\theta)+1}{2}=\frac{3}{2},
$$

and

$$
\max _{C_{2}} u=\max _{\theta \in[0,2 \pi]} \frac{4 \cos (\theta)+1}{4 \sin (\theta)^{2}+4 \cos (\theta)^{2}+1}=\max _{\theta \in[0,2 \pi]} \frac{4 \cos (\theta)+1}{5}=\frac{5}{5}=1 .
$$

Finally, $\max _{\bar{D}} u=\max _{\partial D} u=\max \left\{\frac{3}{2}, 1\right\}=\frac{3}{2}$.
(c) Let $u:[0,1] \times[0,+\infty) \rightarrow \mathbb{R}$ be a solution of the heat equation

$$
\begin{cases}u_{t}-u_{x x}=0, & \text { in }(0,1) \times(0,+\infty), \\ u(0, t)=u(1, t)=e^{-t} \sin (t), & \text { for } t \geq 0, \\ u(x, 0)=\sin (\pi x), & \text { for } x \in[0,1]\end{cases}
$$

What is the maximum of $u$ ?

$$
\max u=1
$$

SOL: Fix $T>0$, and let $Q_{T}=[0, T] \times[0,1]$. We apply the maximum principle for the heat equation: $\max _{Q_{T}} u=\max _{\partial_{P} Q_{T}} u$, where $\partial_{P} Q_{T}=\{0\} \times[0,1] \cup[0, T] \times\{\{0\} \cup\{1\}\}$. Hence

$$
\max _{Q_{T}} u=\max \left\{\max _{x \in[0,1]} \sin (\pi x), \max _{t \in[0, T]} e^{-t} \sin (t)\right\}=1
$$

Since the maximum is independent from $T$, we have a global maximum in $[0,+\infty) \times$ $[0,1]$.
(d) Consider the one dimensional, homogeneous wave equation

$$
\begin{cases}u_{t t}-4 u_{x x}=0, & (x, t) \in \mathbb{R}^{2} \\ u(x, 0)=g(x), & x \in \mathbb{R} \\ u_{t}(x, 0)=1, & x \in \mathbb{R}\end{cases}
$$

where $g(x)=\ln \left(x^{2}+1\right)$ if $|x|<9$ and $g(x)=0$ otherwise. Where are the discontinuities of $u$ ?
$\{x+2 t=9\} \cup\{x-2 t=9\} \cup\{x-2 t=-9\} \cup\{x+2 t=-9\}$

SOL: Recall that singularities travel along characteristics. Characteristics are of the form $x \pm 2 t=$ constant, and $g$ is singular in $x= \pm 9$.
4. Consider the following PDE in the unit square

$$
\begin{cases}\Delta u(x, y)=0, & (x, y) \in[0,1] \times[0,1] \\ u_{y}(x, 0)=\alpha, & x \in[0,1] \\ u_{y}(x, 1)=0, & x \in[0,1] \\ u_{x}(0, y)=0, & y \in[0,1] \\ u_{x}(1, y)=\alpha^{2}, & y \in[0,1],\end{cases}
$$

where $\alpha \in \mathbb{R}$.
(a) Find all values of $\alpha \in \mathbb{R}$ for which the above PDE is solvable.
(b) How many distinct solutions does the above PDE admit? Justify your answer.
(c) Find all solutions of the above problem.

If you were not able to solve point (a), set $\alpha=1$.
(d) Show that the following system

$$
\begin{cases}\Delta u(x, y)=1, & (x, u) \in[0,1] \times[0,1], \\ u_{y}(x, 0)=1, & x \in[0,1], \\ u_{y}(x, 1)=0, & x \in[0,1], \\ u_{x}(0, y)=0, & y \in[0,1], \\ u_{x}(1, y)=1, & y \in[0,1],\end{cases}
$$

admits no solution $u \in C^{2}([0,1] \times[0,1])$.

## SOL:

(a) We check the Neumann boundary compatibility condition:

$$
0=\int_{[0,1]^{2}} \Delta u d A=\int_{\partial[0,1]^{2}} \partial_{\nu} u d \ell=-\int_{0}^{1} \alpha d \ell+\int_{0}^{1} \alpha^{2} d \ell=\alpha(\alpha-1) .
$$

The values of $\alpha$ for which the system is solvable are $\alpha=0$ and $\alpha=1$.
(b) Recall that if $u$ is a solution of the Laplace equation with Neumann boundary condition, $u+C$ is also a solution for any constant $C \in \mathbb{R}$. Hence, we have an infinite amount of distinct solutions.
(c) When $\alpha=0$, we have the only possible solutions $u \equiv C \in \mathbb{R}$. We need to solve the system for $\alpha=1$. Recall that in order to make the slit compatible with the

Neumann boundary compatibility condition, we define $v:=u+\beta\left(x^{2}-y^{2}\right)$ with $\beta \in \mathbb{R}$ wisely chosen. Splittig $v=v_{1}+v_{2}$ gives

$$
\begin{cases}\Delta v_{1}(x, y)=0, & (x, y) \in[0,1] \times[0,1] \\ \left(v_{1}\right)_{y}(x, 0)=1, & x \in[0,1], \\ \left(v_{1}\right)_{y}(x, 1)=-2 \beta, & x \in[0,1] \\ \left(v_{1}\right)_{x}(0, y)=0, & y \in[0,1] \\ \left(v_{1}\right)_{x}(1, y)=0, & y \in[0,1],\end{cases}
$$

and

$$
\begin{cases}\Delta v_{2}(x, y)=0, & (x, y) \in[0,1] \times[0,1], \\ \left(v_{2}\right)_{y}(x, 0)=0, & x \in[0,1], \\ \left(v_{2}\right)_{y}(x, 1)=0, & x \in[0,1], \\ \left(v_{2}\right)_{x}(0, y)=0, & y \in[0,1], \\ \left(v_{2}\right)_{x}(1, y)=1+2 \beta, & y \in[0,1],\end{cases}
$$

Looking at the equation of $v_{2}$, we have to set $\beta=-\frac{1}{2}$. Then, $v_{2} \equiv C \in \mathbb{R}$, and $v_{1}$ solves

$$
\begin{cases}\Delta v_{1}(x, y)=0, & (x, y) \in[0,1] \times[0,1], \\ \left(v_{1}\right)_{y}(x, 0)=1, & x \in[0,1], \\ \left(v_{1}\right)_{y}(x, 1)=1, & x \in[0,1], \\ \left(v_{1}\right)_{x}(0, y)=0, & y \in[0,1], \\ \left(v_{1}\right)_{x}(1, y)=0, & y \in[0,1],\end{cases}
$$

We apply the method of separation of variables: $u(x, y)=X(x) Y(y)$. Imposing the Laplacian equal to zero and looking at the boundary conditions in $x$ we obtain

$$
\left\{\begin{array}{l}
Y^{\prime \prime}(y)=c Y(y) \\
X^{\prime \prime}(x)=-c X(x), \quad X^{\prime}(0)=X^{\prime}(1)=0
\end{array}\right.
$$

for some constant $c \in \mathbb{R}$. We have that $c=n^{2} \pi^{2}, X_{n}(x)=\cos (n \pi x)$, and

$$
Y_{n}(y)=D_{n} \cosh (n \pi y)+E_{n} \cosh (n \pi(y-1)),
$$

when $n \geq 1$ and when $n=0$ we have

$$
Y_{0}(y)=D_{0} y+E_{0} .
$$

By the superposition principle

$$
v_{1}(x, y)=D_{0} y+E_{0}+\sum_{n \geq 1} \cos (n \pi x)\left(D_{n} \cosh (n \pi y)+E_{n} \cosh (n \pi(y-1))\right)
$$

Now,

$$
1=\left(v_{1}\right)_{y}(x, 0)=D_{0}+\sum_{n \geq 1} \cos (n \pi x) E_{n} \sinh (-n \pi) n \pi,
$$

and

$$
1=\left(v_{1}\right)_{y}(x, 1)=D_{0}+\sum_{n \geq 1} \cos (n \pi x) D_{n} \sinh (n \pi) n \pi
$$

Hence, $D_{0}=1$ and for $n \geq 1, D_{n}=-E_{n}=0$, because the Fourier coefficients of the function $x \mapsto 1$ are $\alpha_{n}=0$ if $n \geq 1$ and $\alpha_{0}=1$. Therefore,

$$
v_{1}(x, y)=y+E_{0},
$$

where $E_{0}$ is a general constant. Putting everything together

$$
u=v_{1}+v_{2}-\beta\left(x^{2}-y^{2}\right)=y+C+\frac{1}{2}\left(x^{2}-y^{2}\right) .
$$

where $C \in \mathbb{R}$ is an arbitrary constant.
(d) By integration of the Laplacian over the domain we get

$$
1=\int_{[0,1]^{2}} \Delta u d A=\int_{\partial[0,1]^{2}} \partial_{\nu} u d \ell=0
$$

which is a contradiction.
5. Consider the PDE

$$
\begin{cases}u_{y}+\left(u^{3}+1\right) u_{x}=0, & x \in \mathbb{R}, y>0 \\ u(x, 0)=h(x), & x \in \mathbb{R}\end{cases}
$$

where $h(x)=1$ if $x \leq 0, h(x)=(1-x)^{\frac{1}{3}}$ if $0<x<1$ and $h(x)=0$ if $x \geq 1$.
(a) Identify the flux function.
(b) Check the transversality condition: what can we say about the existence of classical solutions? (is it global/local, unique/not unique?).
(c) Compute the critical time of existence $y_{c}$.
(d) Solve the above conservation law using the Method of Characteristics.
(e) Find a weak solution everywhere defined.

## SOL:

(a) The flux function $f(u)$ is such that $(f(u))_{x}=\left(u^{2}+1\right) u_{x}$. Therefore, $f(u)=\frac{u^{4}}{4}+u$.
(b) We parametrize the initial curve as $\Gamma(s)=\{s, 0, h(s)\}$. We compute

$$
\operatorname{det}\left[\begin{array}{ll}
\frac{d x}{d t} & \frac{d y}{d t} \\
\frac{d x}{d s} & \frac{d y}{d s}
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
\left(h(0)^{3}+1\right) & 1 \\
1 & 0
\end{array}\right]=-1 \neq 0 .
$$

Since the transversality condition is satisfied, we have local existence and uniqueness of solution.
(c) Our conservation law is of the form $u_{y}+c(u) u_{x}=0$, for $c(u)=\left(u^{3}+1\right)$. The critical time of existence is given by the expression

$$
y_{c}:=-\inf \left\{\frac{1}{(c(h(s)))_{s}}: s \in \mathbb{R},(c(h(s)))_{s}<0\right\} .
$$

Now, $c(h(s))$ is equal to 2 if $s \leq 0,2-s$ if $0<s<1$ and 1 if $s \geq 1$. Therefore, the only interval where the function $(c(h(s)))_{s}$ does not vanish is when $s \in(0,1)$, obtaining that

$$
y_{c}=-\frac{1}{-1}=1
$$

(d) Applying the Method of Characteristics we obtain the system of ODEs

$$
\begin{aligned}
x_{t}(t, s) & =\left(\tilde{u}(t, s)^{3}+1\right), \\
y_{t}(t, s) & =1, \\
\tilde{u}(t, s) & =0,
\end{aligned}
$$

$$
\begin{aligned}
& x(0, s)=s \\
& y(0, s)=0 \\
& \tilde{u}(0, s)=h(s),
\end{aligned}
$$

that have as general solutions

$$
x(t, s)=s+\left(h(s)^{3}+1\right) t, \quad y(t, s)=t, \quad \tilde{u}(t, s)=h(s) .
$$

We now have to distinguish between cases:

- If $s \leq 0$, then $x(t, s)=s+2 t$, and hence $s=x-2 y$, implying that $u(x, y)=1$ when $x-2 y \leq 0$
- If $s \geq 1$, then $x(t, s)=s+t$, and hence $s=x-y$, implying that $u(x, y)=0$ when $x-y \geq 1$.
- If $0<s<1$, then $x(s, t)=s+(1-s+1) t$, implying that $s=\frac{x-2 y}{1-y}$, giving $u(x, y)=h\left(\frac{x-2 y}{1-y}\right)=\left(\frac{1-x+y}{1-y}\right)^{\frac{1}{3}}$ when $0<\frac{x-2 y}{1-y}<1$.
Looking closer to the last inequality $0<\frac{x-2 y}{1-y}<1$ we see that if $y<1$, then $2 y<x<1+y$, and if $y>1$ then $2 y>x>1+y$ (simply by multiplying the inequality by $(1-y)$ on both sides). We obtain the smooth solution for $y<1$

$$
u(x, y)= \begin{cases}1, & x \leq 2 y \\ \left(\frac{1-x+y}{1-y}\right)^{\frac{1}{3}}, & 2 y<x<1+y \\ 0, & x \geq 1+y\end{cases}
$$

(e) Drawing the functions $x=2 y$ and $x=1+y$ we see that the characteristics cross at $(x, y)=(2,1)$ for the first time.


Expressing the PDE as $u_{y}+(F(u))_{y}=0$, with $F(u)=u+\frac{u^{4}}{4}$, we can compute the slope of the shock wave taking advantage of the Rankine-Hugoniot condition:

$$
\gamma_{y}(y)=\frac{F\left(u^{+}\right)-F\left(u^{-}\right)}{u^{+}-u^{-}}=\frac{-\left(1+\frac{1}{4}\right)}{-1}=\frac{5}{4} .
$$

Imposing $\gamma(1)=2$, we obtain that $\gamma(y)=\frac{5}{4} y+\frac{3}{4}$. We can extend the solution of the previous point for $y \geq 1$ setting

$$
u(x, y)= \begin{cases}1, & \text { when } x<\frac{5}{4} y+\frac{3}{4} \\ 0, & \text { when } x>\frac{5}{4} y+\frac{3}{4}\end{cases}
$$

6. Consider the disk $D:=\left\{(x, y) \in \mathbb{R}^{2}: \sqrt{x^{2}+y^{2}}<1\right\}$. Let $u=u(x, y)$ be a function twice differentiable in $D$ and continuous in $\bar{D}$, solving

$$
\begin{cases}\Delta u(x, y)=0, & \text { in } D \\ u(x, y)=g(x, y), & \text { on } \partial D\end{cases}
$$

for some given function $g$.
(a) Suppose $g(x, y)=x^{2}+y^{2}+x y$.
i. Compute $u(0,0)$.
ii. Compute $\max _{(x, y) \in \bar{D}} u(x, y)$ and $\min _{(x, y) \in \bar{D}} u(x, y)$.

Hint: recall the trigonometric identity: $\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta)$.
(b) Suppose now that $g$ is any smooth function such that $g(x, y) \leq x^{2}-y^{2}+y$.
i. Show that $u\left(\frac{1}{2}, 0\right) \leq \frac{1}{4}$.
ii. Show that if $u\left(\frac{1}{2}, 0\right)=\frac{1}{4}$, then $g(x, y)=x^{2}-y^{2}+y$.

Hint: the function $x^{2}-y^{2}+y$ is harmonic.

## SOL:

(a) For point i. we apply the mean-value principle:

$$
\begin{aligned}
u(0,0)=\frac{1}{2 \pi} \int_{\partial D} g d \ell & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (\theta)^{2}+\sin (\theta)^{2}+\sin (\theta) \cos (\theta) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} 1+\sin (\theta) \cos (\theta) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} 1+\frac{1}{2} \sin (2 \theta) d \theta=1+\frac{1}{2 \pi}\left[-\frac{\cos (2 \theta)}{4}\right]_{0}^{2 \pi}=1 .
\end{aligned}
$$

For point ii. we apply the maximum/minimum principle:

$$
\begin{aligned}
\max _{\bar{D}} u & =\max _{\partial D} u=\max _{\theta \in[0,2 \pi]}\left\{\cos (\theta)^{2}+\sin (\theta)^{2}+\cos (\theta) \sin (\theta)\right\}=\max _{\theta \in[0,2 \pi]}\left\{1+\frac{1}{2} \sin (2 \theta)\right\} \\
& =1+\frac{1}{2}=\frac{3}{2} .
\end{aligned}
$$

And similarly,

$$
\min _{\bar{D}} u=\min _{\partial D} u=\min _{\theta \in[0,2 \pi]}\left\{1+\frac{1}{2} \sin (2 \theta)\right\}=1-\frac{1}{2}=\frac{1}{2} .
$$

(b) For point i. define $w(x, y):=u(x, y)-\left(x^{2}-y^{2}+y\right)$. Then,

$$
\begin{cases}\Delta w=0, & \text { in } D \\ w \leq 0, & \text { on } \partial D\end{cases}
$$

The maximum principle,

$$
\max _{\bar{D}} w=\max _{\partial D} w \leq 0,
$$

implies that

$$
w(x, y)=u(x, y)-\left(x^{2}-y^{2}+y\right) \leq 0
$$

and hence $u\left(\frac{1}{2}, 0\right) \leq \frac{1}{4}$. For point ii. observe that if $u\left(\frac{1}{2}, 0\right)=\frac{1}{4}$, then $w\left(\frac{1}{2}, 0\right)=0$, that is $w$ reach its maximum in the interior of $D$. By the strong maximum principle, $w \equiv 0$, implying that $u=x^{2}-y^{2}+y$, and hence $g=x^{2}-y^{2}+y$.

